Nonparametric Imputation of Missing Values for Estimating Equation Based Inference
نویسندگان
چکیده
We consider an empirical likelihood inference for parameters defined by general estimating equations when some components of the random observations are subject to missingness. As the nature of the estimating equations is wide ranging, we propose a nonparametric imputation of the missing values from a kernel estimator of the conditional distribution of the missing variable given the always observable variable. The empirical likelihood is used to construct a profile likelihood for the parameter of interest. We demonstrate that the proposed nonparametric imputation can remove the selection bias in the missingness and the empirical likelihood leads to more efficient parameter estimation. The proposed method is further evaluated by simulation and an empirical study on a genetic dataset on recombinant inbred mice.
منابع مشابه
Nonparametric Imputation of Missing Values for Estimating Equation Based Inference – a Full Report
We propose a nonparametric imputation procedure for data with missing values and establish an empirical likelihood inference for parameters defined by general estimating equations. The imputation is carried out multiple times via a nonparametric estimator of the conditional distribution of the missing variable given the always observable variable. The empirical likelihood is used to construct a...
متن کاملEmpirical Likelihood for Estimating Equations with Missing Values
We consider an empirical likelihood inference for parameters defined by general estimating equations when some components of the random observations are subject to missingness. As the nature of the estimating equations is wide-ranging, we propose a nonparametric imputation of the missing values from a kernel estimator of the conditional distribution of the missing variable given the always obse...
متن کاملEstimating Missing Values Using Mixture Kernel Regression
One of the important problem in data quality is the presence of missing data. So missing data imputation is an important issue in learning from incomplete data. Imputation is a procedure that replaces the missing values in a data set by some plausible values. Various techniques have been developed to deal with missing values in data sets with homogenous attributes. But those approaches are inde...
متن کاملEstimating Semi-Parametric Missing Values with Iterative Imputation
In this paper, the author designs an efficient method for imputing iteratively missing target values with semi-parametric kernel regression imputation, known as the semi-parametric iterative imputation algorithm (SIIA). While there is little prior knowledge on the datasets, the proposed iterative imputation method, which impute each missing value several times until the algorithms converges in ...
متن کاملComparison of missing value imputation methods for crop yield data
Most ecological data sets contain missing values, a fact which can cause problems in the analysis and limit the utility of resulting inference. However, ecological data also tend to be spatially correlated, which can aid in estimating and imputing missing values. We compared four existing methods of estimating missing values: regression, kernel smoothing, universal kriging, and multiple imputat...
متن کامل